Skip to main content

Advertisement

Log in

Inotropic effects of l-lysine in the mammalian heart

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We studied the effects of l-lysine in cardiac preparations of mice and men. Of note, l-lysine increased force of contraction in a concentration- and time-dependent manner in isolated electrically paced left atrium of mouse and in human right atrium. It further increased heart rate and left ventricular pressure in the isolated perfused mouse heart. In isolated adult mouse cardiomyocytes, the contractility as assessed by edge detection was increased as well as the Ca2+ transients after electrically pacing by field stimulation. However, using the patch clamp technique, no effect of l-lysine on action potential duration from a constant holding potential or on current through l-type calcium channels could be observed. However, l-lysine led to a depolarization of unclamped cells. Furthermore, effects of l-lysine were stereospecific, as they were not elicited by d-lysine. The inotropic effects of l-lysine were not abrogated by additionally applied l-ornithine or l-arginine (known inhibitors of lysine transport). However, l-lysine (5 mM) shifted the concentration–response curve for a positive inotropic effect of 5-hydroxytryptamine (5-HT; serotonin) in atrium of transgenic mice (with cardiac specific overexpression of 5-HT4 receptors) to higher concentrations. In summary, we describe a novel positive inotropic effect of an essential amino acid, l-lysine, in the mammalian heart. One might speculate that l-lysine treatment under certain conditions could sustain cardiac performance. Moreover, l-lysine is able to block, at least in part, cardiac 5-HT4 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arancibia-Garavilla Y, Toledo F, Casanello P, Sobrevia L (2003) Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium. Exp Physiol 88:699–710

    Article  PubMed  CAS  Google Scholar 

  • Bethke T, Klimkiewicz A, Kohl C, von der Leyen H, Mehl H, Mende U, Meyer W, Neumann J, Schmitz W, Scholz H, Starbatty J, Stein B, Wenzlaff H, Döring V, Kalmár P, Haverich A (1991) Effects of isomazole on force of contraction and phosphodiesterase isoenzymes I–IV in nonfailing and failing human hearts. J Cardiovasc Pharmacol 18:386–397

    Article  PubMed  CAS  Google Scholar 

  • Böhm M, Brückner R, Neumann J, Schmitz W, Scholz H, Starbatty J (1986) Role of guanine nucleotide-binding protein in the regulation by adenosine of cardiac potassium conductance and force of contraction. Evaluation with pertussis toxin. Naunyn-Schmiedeberg’s Arch Pharmacol 332:403–405

    Article  Google Scholar 

  • Boknik P, Neumann J, Kaspareit G, Schmitz W, Scholz H, Vahlensieck U, Zimmermann N (1997) Mechanisms of the contractile effects of levosimendan in the mammalian heart. J Pharmacol Exp Ther 280:277–283

    PubMed  CAS  Google Scholar 

  • Clayton PT (2006) B6-responsive disorders: a model of vitamin dependency. J Inherit Metab Dis 29:317–326

    Article  PubMed  CAS  Google Scholar 

  • Closs EI, Albritton LM, Kim JW, Cunningham JM (1993) Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J Biol Chem 268:7538–7544

    PubMed  CAS  Google Scholar 

  • Closs EI, Gräf P, Habermeier A, Cunningham JM, Förstermann U (1997) Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: three related carriers with distinct transport properties. Biochemistry 36:6462–6468

    Article  PubMed  CAS  Google Scholar 

  • Devés R, Boyd CA (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545

    PubMed  Google Scholar 

  • Gergs U, Boknik P, Buchwalow I, Fabritz L, Matus M, Justus I, Hanske G, Schmitz W, Neumann J (2004) Overexpression of the catalytic subunit of protein phosphatase 2A impairs cardiac function. J Biol Chem 279:40827–40834

    Article  PubMed  CAS  Google Scholar 

  • Gergs U, Baumann M, Böckler A, Buchwalow IB, Ebelt H, Fabritz L, Klöckner U, Neumann J (2008) Overexpression of the serotonin 5-HT4a receptor: a mouse model for cardiac arrhythmias (Abstract). Naunyn Schmiedebergs Arch Pharmacol 377(Suppl 1):52

    Google Scholar 

  • Kamoun P, Richard V, Rabier D, Saudubray JM (2002) Plasma lysine concentration and availability of 2-ketoglutarate in liver mitochondria. J Inherit Metab Dis 25:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kaumann AJ (1994) Do human atrial 5-HT4 receptors mediate arrhythmias? TIPS 15:451–455

    PubMed  CAS  Google Scholar 

  • Kaumann AJ, Levy FO (2006) 5-Hydroxytryptamine receptors in the human cardiovascular system. Pharmacol Ther 111(3):674–706

    Article  PubMed  CAS  Google Scholar 

  • Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ (1990) A 5-hydroxytryptaminereceptor in human atrium. Br J Pharmacol 100:879–885

    PubMed  CAS  Google Scholar 

  • Kavanaugh MP (1993) Voltage dependence of facilitated arginine flux mediated by the system y+basic amino acid transporter. Biochemistry 32:5781–5785

    Article  PubMed  CAS  Google Scholar 

  • Kirchhefer U, Neumann J, Baba HA, Begrow F, Reinke U, Schmitz W, Kobayashi YM, Jones LR (2001) Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1. J Biol Chem 276:4142–4149

    Article  PubMed  CAS  Google Scholar 

  • Läer S, Remmers F, Stein B, Scholz H, Müller FU, Neumann J (1998) Receptor mechanisms involved in 5-HT induced inotropic action in the rat isolated atrium. Br J Pharmacol 123:1182–1188

    Article  PubMed  Google Scholar 

  • Neumann J, Boknik P, Herzig S, Gupta RC, Watanabe AM, Schmitz W, Scholz H (1993) Evidence for physiological functions of protein phosphatases in the heart. Evaluation with okadaic acid. Am J Physiol 265:H257–H266

    PubMed  CAS  Google Scholar 

  • Neumann J, Eschenhagen T, Grupp IL, Haverich A, Herzig JW, Hirt S, Kalmár P, Schmitz W, Scholz H, Stein B, Wenzlaff H, Zimmermann N (1996) Positive inotropic effects of the calcium-sensitizer CGP 48506 in failing human myocardium. J Pharmacol Exp Ther 277:1579–1585

    PubMed  CAS  Google Scholar 

  • Neumann J, Bartel S, Eschenhagen T, Haverich H, Hirt S, Kalmár P, Karczewski P, Krause EG, Schmitz W, Scholz H, Stein B, Thoenes M (1999) Dissociation of the effects of forskolin and dibutyryl cAMP on force of contraction and phospholamban phosphorylation in human heart failure. J Cardiovasc Pharmacol 33:157–162

    Article  PubMed  CAS  Google Scholar 

  • Neumann J, Ebelt H, Klöckner U, Böckler A, Günther S, Baumann M, Schulz N, Werner F, Gergs U (2008) The human serotonin 5-HT4a receptor (Abstract). Circulation 117:8–9

    Article  Google Scholar 

  • Peluffo RD (2007) L-Arginine currents in rat cardiac ventricular myocytes. J Physiol 580:925–936

    Article  PubMed  CAS  Google Scholar 

  • Rector TS, Bank AJ, Mullen KA, Tschumperlin LK, Sih R, Pillai K, Kubo SH (1996) Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure. Circulation 93:2135-2141

    Google Scholar 

  • Saudubray JM, Rabier D (2007) Biomarkers identified in inborn errors for lysine, arginine, and ornithine. J Nutr 137:1669S–1672S

    PubMed  CAS  Google Scholar 

  • Shimamura K, Zhou M, Toba M, Kimura S, Higuchi T, Kawaguchi H, Sekiguchi F, Sunano S (2003) Effects of L-arginine on spontaneous contraction of the rat portal vein. Pflugers Arch 446:30–35

    PubMed  CAS  Google Scholar 

  • Smriga M, Torii K (2003) L-Lysine acts like a partial serotonin receptor 4 antagonist and inhibits serotonin-mediated intestinal pathologies and anxiety in rats. Proc Natl Acad Sci U S A 100:15370–15375

    Article  PubMed  CAS  Google Scholar 

  • Stathopulos PB, Lu X, Shen J, Scott JA, Hammond JR, McCormack DG, Arnold JM, Feng Q (2001) Increased L-arginine uptake and inducible nitric oxide synthase activity in aortas of rats with heart failure. Am J Physiol Heart Circ Physiol 280:H859–H867

    PubMed  CAS  Google Scholar 

  • Stein WD (1990) Channels, carriers, and pumps: an introduction to membrane transport. Academic, San Diego

    Google Scholar 

  • Steinfath M, Danielsen W, von der Leyen H, Mende U, Meyer W, Neumann J, Nose M, Reich T, Schmitz W, Scholz H, Starbatty J, Stein B, Döring V, Kalmár P, Haverich A (1992) Reduced α1- and β2-adrenoceptor mediated positive inotropic effects in human end-stage heart failure. Br J Pharmacol 105:463–469

    PubMed  CAS  Google Scholar 

  • Tomé D, Bos C (2007) Lysine requirement through the human life cycle. J Nutr 137:1642S–1645S

    PubMed  Google Scholar 

  • Vahlensieck U, Boknik P, Gombosova I, Huke S, Knapp J, Linck B, Lüss H, Müller FU, Neumann J, Deng MC, Scheld HH, Jankowski H, Schlüter H, Zidek W, Zimmermann N, Schmitz W (1999) Inotropic effects of diadenosine tetraphosphate (AP4A) in human and animal cardiac preparations. J Pharmacol Exp Ther 288:805–813

    PubMed  CAS  Google Scholar 

  • von der Leyen H, Mende U, Meyer W, Neumann J, Nose M, Schmitz W, Scholz H, Starbatty J, Stein B, Wenzlaff H, Döring V, Kalmár P, Haverich A (1991) Mechanism underlying the reduced positive inotropic effects of the phosphodiesterase III inhibitors pimobendan, adibendan and saterinone in failing as compared to nonfailing human cardiac preparations. Naunyn-Schmiedeberg´s Arch Pharmacol 344:90–100

    Google Scholar 

  • Zani BG, Bohlen HG (2005) Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am J Physiol Heart Circ Physiol 289:H1381–H1390

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann N, Boknik P, Gams E, Herzig JW, Neumann J, Schmitz W, Scholz H, Wenzlaff H (1996) Positive inotropic effects of the calcium-sensitizer CGP 48506 in guinea pig myocardium. J Pharmacol Exp Ther 277:1572–1578

    PubMed  CAS  Google Scholar 

  • Zimmermann N, Nacke P, Neumann J, Winter J, Gams E (2000) Inotropic effects of diadenosine monophosphate (AP1A) in isolated human cardiac preparations. J Cardiovasc Pharmacol 35:881–886

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (DFG). The technical assistance of C. Geisler and S. Reber is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boldt, A., Gergs, U., Frenker, J. et al. Inotropic effects of l-lysine in the mammalian heart. Naunyn-Schmied Arch Pharmacol 380, 293–301 (2009). https://doi.org/10.1007/s00210-009-0439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0439-3

Keywords

Navigation